Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
DNA origami nanostructures (DOs) are promising tools for applications including drug delivery, biosensing, detecting biomolecules, and probing chromatin substructures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing, visualizing, and controlling biomolecular processes within live cells. We present an approach to deliver DOs into live-cell nuclei. We show that these DOs do not undergo detectable structural degradation in cell culture media or cell extracts for 24 hours. To deliver DOs into the nuclei of human U2OS cells, we conjugated 30-nanometer DO nanorods with an antibody raised against a nuclear factor, specifically the largest subunit of RNA polymerase II (Pol II). We find that DOs remain structurally intact in cells for 24 hours, including inside the nucleus. We demonstrate that electroporated anti–Pol II antibody–conjugated DOs are piggybacked into nuclei and exhibit subdiffusive motion inside the nucleus. Our results establish interfacing DOs with a nuclear factor as an effective method to deliver nanodevices into live-cell nuclei.more » « less
-
The coadsorption of Hg0 and SO3 on pure and Cu/Mn doped CeO2(110) surfaces were investigated using the Density Functional Theory (DFT) method. A p (2 × 2) supercell periodic slab model with seven atomic layers was constructed to represent the CeO2(110) surface. The results indicated that Hg0 physically adsorbed on the CeO2(110) surface, while Hg0 chemically adsorbed on the Cu/Mn doped CeO2(110) surface, which agree well with the experimental results that Cu and Mn doped CeO2 greatly improved the Hg0 adsorption capacity of the adsorbent. The calculated results suggested that SO3 more easily adsorbs on the above three surfaces than Hg0 due to the higher adsorption energy. The adsorption configurations and electronic structures indicated SO3 reacted with O atoms of the surface to form SO42− species. Hence, SO3 inhibits Hg0 adsorption on the CeO2(110) surface by competing with Hg0 for surface lattice oxygen. In addition, SO3 decreased the activity of the surface O atoms, which directly caused the negative effect on Hg0 adsorption.more » « less
An official website of the United States government
